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The convective circulation driven by a surface buoyancy flux in a dead-end open 
channel is analysed. On the assumption of similarity profiles for velocity and tem- 
perature, the governing partlial differential are reduced to two nonlinear ordinary 
differential equations by integrating over the flow depth. A closed-form solution of 
the differential equations is presented. The solution is a function of the Grashof 
number G and the modified Prandtl-Grashof number P,G* defined ih (21). The 
velocity and temperature along the channel vary linearly as the distance and as the 
square of the distance respectively. Analytical expressions for the rate of total heat 
loss from the channel and the rateof flow in the channel are derived. The analytical 
results compare well with the available experimental data. 

1. Introduction 
The convective circulation considered in this paper occurs in sidearms (dead-end 

channels) of cooling lakes used for the disposal of water heat from electric power 
generation. These dead end channels are very effective in heat dissipation to the 
atmosphere owing to strong density currents developed in them (Ryan, Harleman & 
Stolzenbach 1974). The physical processes that are responsible for the development 
of the convective circulation in dead-end channels are explained by Sturm & Kennedy 
(1980), and are summarized as follows. The warmer and lighter water from the main 
lake spread as a surface layer into the dead-end channel, as shown in figure 1. There is a 
continuous surface buoyancy flux B from the upper layer into the atmosphere by the 
surface cooling; consequently the temperature of the upper layer decreases and the 
density of water in the upper layer increases along the z-direction. There develops a 
positive longitudinal density gradient along the x-direction which drives the bottom 
current from the channel into the main reservoir. 

The flow field in a dead end channel is similar to that in the Red Sea described by 
Phillips (1 966). The surface buoyancy flux in the Red Sea is the result of the surface 
cooling and the increase of salinity due to evaporation. Using dimensional reasoning, 
Phillips presented a similarity solution for a constant surface buoyancy flux. The 
present author (Jain 1980) extended Phillips’ similarity solution to a case where the 
surface buoyancy flux is linearly proportional to the water surface temperature. Both 
Phillips’ and the author’s analyses showed that the longitudinal velocity decays along 
the 2-direction; consequently there is continuous downflow from the upper layer into 
the lower layer. Brocard & Harleman (1980) observed such a downflow in some of 
their laboratory experiments on convective Circulation. The absence of the sharp 
gradients in the measured vertical buayancy profiles for the Red Sea presented by 
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FIGURE 1. Convective circulation in free-surface channel. 

Phillips corroborates the hypothesis of the continuous downflow. This continuous 
downflow is the result of convective motions in the unstable upper layer due to surface 
cooling penetrating into the lower stable layer. The two-layer model for convective 
circulation presented by Brocard t Harleman (1980) does not consider the continuous 
downflow, and is therefore applicable to short channels where the downflow can be 
neglected, Sturm & Kennedy (1980) solved the governing equations numerically for 
the convective flow in a dead-end channel and presented the correlation of the 
numerical results to allow an estimate of heat loss from the sidearm. An exact analytical 
solution of the governing equations is presented in this paper. The solution is based on 
the similarity assumption, which leads to a continuous distribution of downflow. 

2. Analytical model 
The flow field in the channel is divided into three regions: the entrance region, the 

established-flow region and the dead-end region. The entrance region, which is a few 
depths in length, is characterized by rapid changes in velocity and temperature along 
the streamwise direction and in the elevation of the interface between the two layers. 
For the shallow upper layer at  the entrance, the inflow of warm water into the channel 
acts like a buoyant surface jet. The thickness of the upper layer increases rapidly 
owing to entrainment in the entrance region, and approaches an equilibrium value at  
the end of the entrance region. For deeper entrance upper-layer depths, the thickness 
of the upper layer decreases rapidly to a final equilibrium value. In the established- 
flow region the velocity and temperature gradients along the x-direction are much 
smaller than those along the y-direction, and the interface elevation is practically 
constant. The flow field in this region is governed primarily by the surface buoyancy 
flux and the viscous forces. The surface buoyancy flux B is due to the surface cooling, 
and is given by 
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where g is the gravitational acceleration, B = ( - l/p) @/aT is the thermal coefficient 
of the water, Q, is the surface heat flux per unit surface area, and C,, p and T are 
respectively the specific heat, density and temperature of the water. The surface 
heat flux, which is a function of the water-surface temperature T, and the meteorological 
conditions, is determined from a linearized relation introduced by Edinger & Geyer 
(1965): 

Q, = K(T, - T,), 

where K is the surface heat-exchange coefficient and T, is the equilibrium temperature. 
Q, in (2) is counted positively upward along the y-direction. In  the established-flow 
region the flow rate and temperature of the upper layer decreases continuously, as 
explained in 1. If the channel is sufficiently long, the water surface temperature at 
a certain distance L, from the beginning of the established region (x = 0) will cool 
down to the equilibrium temperature, and the channel beyond this section will not 
be effective in cooling. The flow velocity at this section, as shown in $2.4, is zero. The 
length L, is hereinafter referred to as the equilibrium length. Channels of length 
L 2 L, and L .c L, are hereinafter referred to as long and short channels respectively. 
For a dead-end short channel the flow in the upper layer near the dead end of the 
channel is non-zero. The region of downflow near the dead end of the short channel is 
called a dead-end region. 

2.1. Governing equations and boundary conditions 

The analysis presented in this paper is concerned with the established region of 
channels of uniform width and with horizontal bottoms. Lateral uniformity is 
assumed, leading to a two-dimensional problem in the vertical plane. The governing 
equations for the flow in the established region, where the vertical velocity and 
temperature gradients are much greater than the corresponding horizontal gradients 
(boundary-layer approximations), and where the effect of density variation is impor- 
tant only on the buoyancy term (Boussinesq’s approximation), are: 

au av 
ax ay 
- + - = 0 (continuity), 

0 = --- ” pg (y-momentum), 
aY 

ax (thermal energy), 

(3) 

p = -/3p,T+a (state), (7) 

where u and v are the components of time-averaged velocity vectors along the x- and 
y-directions respectively, p is the pressure, T is the time-averaged temperature, pe is 
the water density at the equilibrium temperature, a is a constant, T~ is the shear 
stress, and Dv is the thermal diffusivity. Elimination of the pressure term between 
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(4) and (5), and integration of the continuity, momentum and energy equations over 
the flow depth D, reduces them to 

where T,, is the shear stress a t  the channel bottom, Equations (9) and (10) are reduced 
to ordinary differential equations by invoking the following assumptions. It was 
observed in the laboratory experiments reported by Brocard, Jirka & Harleman 
(1977) and Sturm (1976) that the water surface and the interface deviations were 
almost constant in the channel, and that the flow in the lower layer was laminar. The 
effect of the water-surface slope is therefore neglected. The bottom shear stress in (9) 
is expressed as 

3+)1 Pe u=o , (11) 

where v is the kinematic viscosity of the fluid. The vertical velocity and temperature 
profiles are assumed to be similar, and are denoted by 

where u, is the flow velocity at the water surface, T, is the water-surface temperature, 
T, is the temperature at the end of the established region, and 7 = y / D .  The integrated 
momentum and energy equations (9) and (lo), upon substitution for @, u, T and T~ 

from (2), (1  l ) ,  (12) and (13), and integration reduce to 

(15) 
d 
ax C, D - [u, (T, - T,)] + k( T, - T,) = 0, 

where the constants C,, through C, result from the integration of the various products 
off(rl) and Wrl) : 

In a buoyancy driven flow, there is no characteristic velocity independent of the flow. 
The boundary conditions for the two ordinary differential equations (14) and (15) 
are therefore expressed in terms of temperatures at the two ends of the established 
region, i.e. T, = To ( X  = 0 ) ,  T, = T, ( X  = L), (16) 
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where To is the water-surface temperature at  the beginning of the established region. 
T,  in (16) is an unknown. Since there is no independent velocity in such flows, the 
velocity in (14) and (15) is normalized by [@(To - Te) gD]), which is the surface spread- 
ing rate of a buoyant layer. The temperatures in (14) and (15) are normalized by 
To - T,. Equations (14) and (15) on normalization reduce to 

where 

The primes in (1 7) and (1  8) denotes differentiation with respect to 6 = z /D .  It should 
be noted that the coefficients yl, yz and y3 in ( 17) and (1  8) are positive. The normalized 
equations (17 )  and (18) contain two dimensionless governing parameters: the Graahof 
number G and the modified Prandtl-Grashof number P,G*. The Graahof number 
represents the ratio of the buoyancy to viscous forces. The modified Prandtl-Grctshof 
number, as shown in $2.4, is the ratio of the surface spreading rate of a buoyant layer 
to the sinking rate of the water from the upper layer into the lower layer. The boundary 
conditions given by (16) reduce in the normalized form to 

2.2. Analytical solution 

The differential equations (17) and (18) do not contain the independent variable 6 
explicitly. This system of nonlinear ordinary differential equations can be reduced 
to an equation of first order in 4 and 8. On eliminating 4' from (17) and (18) one gets 

8' = - [ ( Y Z + Y ~ ) @  +~3en41/(4'+yl@. 

Similarly the elimination of 8' from (17) and (18) yields 

(23) 

9' = [YZ P - ~ 1 ~ 3 ( e  + en)]/($' + 71 0). (24) 

If (24) is divided by (23), the following equation of first order is obtained: 

9+f(W ae = s(e)9", (25 1 

Equation (25) is the Bernoulli equation (Ames 1968), which can be solved using 

(27) 4 = ul/(l--n). the transformation 
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With this transformation (25 )  takes the form 

(28 )  
du 
a8 -+(l-n)f(B)u = (l-n)g(B),  

whose solution is 

u = exp [(n - 1) If(@ dB1 { A  - (n  - 1) JgW) [( 1 - 4 jf(@ do1 do}, (29) 

where A is a constant of integration, On substituting for f(8), g(8) and n from (26 )  
into (29) and integrating, one obtains 

(30) 

where II. = ( ~ 2 + ~ 3 ) 8 + ~ 3 8 n .  (31) 

~ 1 ~ 3 e n  

( 7 2  + 7 3 )  ' 
+- 2Yl 7 3  @ + A 

U =  
@2yn'(Ya+Ys) ( 7 2  + Y3) (3Y2 + y3) 

The constant A must be put equal to  zero, since the velocity must remain finite 
when @ goes to zero. Thus the solution of (25 )  from (27) and (30) is 

where 

On substituting for # from (32 )  into (24), and simplifying, one obtains 

which on integration yields 
d4ldC = -&Y3, 

4 = -*y,t+B, 

(32 )  

(33) 

(34 )  

(35) 

where B is a constant of integration. The value of the constant of integration B is 
obtained by substituting for q5 from (32 )  into (35 )  and using the boundary condition 
8 = 1-8, at 6 = 0 from (22): 

Hence the solution of the governing equations (17) and (18) is 

B = [(I + i V n ) / O -  

The unknown 8, is determined from the boundary condition 8 = 0 at t; = Lo from 
(22 ) :  

(38 )  

An expression for the equilibrium length L, for a channel, as defined earlier, is obtained 
on substituting 8, = 0 in (38 ) ,  and is given by 

where Lz = L,/D. 
2.3. Analytical results 

A summary of the analytical solution is given below: 

8, = ( 1 + gy; L026,) - (8 y; LO2&, + &y; Lo4&;)*. 

L: = 3/Y3& (39)  
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en = i + 2h2 - (6h2 + 3h4)4 
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(42) where 

)” 
180, Ct 

LE = ( 
2C1/(Pm Gi)2 + 3C3C4/Pm GiGi ’ (43) 

The expressions for the rate of total surface heat loss from, and the rate of flow 
into, the upper layer of the channel are of practical interest in evaluating the cooling 
potential of a lake on the waste-heat loading from a power plant. The rate of surface 
heat loss H L  from a unit width of a channel of length L is 

HL = IoL K ( q  - T,) dx, (46) 

which on substituting for T, from (40), and on integrating reduces to 

H L  = KL,(To - T,) {A + &A3 - A2 [g + h2 - (#A2 + $A4)*]*}. (47) 

The rate of total surface heat loss H,, from unit width of a long channel is obtained 
by substituting unity for h in (47): 

H L e  = &KLe(G-Te)- (48) 

The ratio qH of total heat loss from a short channel of length L to that from a long 
channel from (47) and (48) is a function of h only, and is given by 

vH = 3h{i +gha-h[~+h2-(~ha+~h4)*] i } .  (49) 

The surface velocity as determined from (41) is 

and the flow rate q per unit channel width in the upper layer is obtained by integrating 
the velocity distribution over the upper layer depth and substituting for us from (50): 

where C, = /I f (q)dq and f ( A )  = 0.  8, in (50) and (51) can be expressed in terms of A 

from (42). The rate of flow in the upper layer decreases linearly with distance x. The 
rate V of continuous downflow from the upper layer into the lower layer is, from (51), 

n 
ci 

V = b k ,  
3c4 

which shows that the rate of continuous downflow is directly proportional to the 
surface heat-loss coefficient. The unit flow rate qo at x = 0 is, from (51), 

q o  CEi - = - (1  ++en)#. kL, 3C4 (53) 

The unit discharge qoe for a long channel is obtained on substituting 8, = 0 in (53). 
An expression for the normalized discharge qq, is 

(54 1 qq0 = qo/qoe = [8 + h2 - (ah2 + 4h4)V. 
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FIGURE 2. Variation of surface temperature and velocity along the channel. 
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2.4. Discussion of analytical results 

Introduction of the equilibrium length L, made it possible to present the analytical 
solutions ($2.3) in generalized form. L, given by (43) is a function of velocity and 
temperature profiles, the constants C,, . . . , C,, and the dimensionless governing 
parameters PmGi and G. It can be shown from (52) that the parameter PmGi defined in 
(21) represents the ratio of the surface spreading rate of the buoyant layer to the 
rate of the continuous downflow from the upper layer into the lower layer. One would 
expect L, to increase with the increase in the ratio of either the surface spreading rate 
of the buoyant layer to the sinking rate of the continuous downflow, i.e. P,Gt, or the 
buoyancy force to the viscous force, i.e. G ;  and indeed that is the case, as can be seen 
from (43). 

The variations of the surface temperature and velocity along the channel for a long 
channel ( A  2 1)  and a short channel ( A  = 0.5) are presented in figure 2. The value of 
en for A = 0.5 from (42) is 0-2. The increase in the surface velocity for short channels 
is due to the reduction in the overall friction larger than that in the overall longitudinal 
density gradient. Heat conservation for short channels, in which there is an increase 
in net local flux due to the increase in the surface velocity, is satisfied by the increase 
in the temperature decay. The velocity at x = L, is zero; hence a long channel beyond 
this section is not effective in cooling. 

The effect of the channel length on On, rH,  and rpo from (42), (49) and (54)) while the 
other variables are held constant, is shown in figure 3. The rate of change of 0, and rH 
with A decreases rapidly with increase in A. Indeed, about 84% of the maximum 
surface heat loss and 80% of the maximum surface-temperature drop occur in a 
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FIGURE 3. Analytical results for dimensionless dead-end temperature, surface heat loss, and 
discharge: - - - ,en; - 9 7 lH;  - - - - -9 7s. 

channel length equal to 50% of the equilibrium length. The unit discharge in the 
upper layer increases with the decrease in the channel length. The maximum value 
of r,, that occurs for h = 0 is JQ. The reason for the increase in qo for short channels 
is the same as that for the surface velocity explained earlier. 

3. Comparison of analytical and experimental results 
The analytical results are compared with the experimental data of Brocard et al. 

(1977). Their experimental set-up was an insulated flume 2.5 f t  wide, 1 f t  deep, and of 
adjustable length up to 35 ft, connected to a large rectangular basin. The value of 0, 
in their experiments ranged from 0.82 to 0.95, which indicates that the experimental 
channel was a 'short' channel. It is not possible to compute the profile constants as 
no detailed measurements of vertical velocity profiles were reported. The experi- 
mental runs in which the elevation of the interface did not change significantly along 
the channel were selected for comparison. The length of the established-flow region 
was assumed equal to the length of the experimental channel for these selected runs. 
The values for the equilibrium length L, of the channel were computed from (42) 
using the measured values of 8,. 

The surface-temperature distributions along the channel for runs 13 and 14 are 
compared with (40) in figure 4. The agreement of the experimental data with the 

analytical solution, it is essential to verify (43) using the experimental data. Equation 
(431 can be written as 

I analytical solution is fairly good. Since L, is the most significant parameter in the 
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FIGURE 4. Comparison of (40) for longitudinal distribution of eurface temperature with the 
experimental data of Brocard et al. (1977).  x , run 14. 
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FIGURE 5. Comparison of (56) with the experimental data of Brocard et al. (1977) .  

where 8, = 3C4[2C2/(2C,+ 3C,C,P,)]* is a constant for a constant value of P,. On 
equating the value of h from (40) to that from (55) ,  one gets 

The selected experimental data for which the values of P, were almost same are 
compared with (56) in figure 5.  The agreement between theory and measurements is 
satisfactory. Brocard et al. (1977) also presented data for the non-dimensional dis- 
charge qo/kL into the channel. Equation (53) on substituting for L, from (55 )  reduces 
to 

The agreement between (57) and the measurements shown in figure 6 is considered 
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The analytical results compare fairly satisfactorily with the experimental data. 
The scatter in the data can be explained by difficulties in the measurements of flow 
rates and estimation of surface buoyancy flux in the experiments, and the assumption 
regarding the length of the established flow region. 

3.1. Profile constants 
The constants C,, . . . , C ,  can be evaluated from the measured velocity and temperature 
profiles given by Sturm (1976). The velocity and temperature distributions of Sturm, 
after normalization, are shown in figure 7. The results of Sturm indicate a non- 
uniform temperature distribution in the upper layer, while the temperature data of 
Brocard et al. (1977) (who did not present velocity profiles) show a uniform temperature 
in this region, as one would expect in an unstable layer. The temperature profile of 
Sturm was therefore modified (figure 7) to evaluate the constants. The values of the 
constants for these profiles are: C ,  = 0.30, C,  = 0.37, C,  = 0.25 and C,  = 0.23. It was 
found difficult to determine the value of C, (the velocity gradient at 7 = 0) accurately 
from the measured velocity profile of Sturm. The value of C, was therefore obtained 
from (la),  which was integrated using the measured velocity and temperature data 
for run B of Sturm. The velocity distributions at f = 40 and 6 = 80 (not presented 
here) are almost identical, indicating an insignificant downflow in the reach con- 
sidered; us is therefore a constant between these two sections. 

Consequently, the contribution to the integral of the first term in (14) is zero. The 
value of C, was then determined by substituting the measured values of u, and 
T,-T, a t  f = 40 and 80 and D in (14), and was found to  be 210. The value of the 
parameter 8, in (56) and (57) for these values of the profile constants and for a modified 
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FIGURE 7. Measured velocity and temperature profiles at 6 = 40 by Sturm (-). Modified 

temperature profile (- - -). 

Prandtl number P, of 0.5 (which is the average value of P, for the data, plotted in 
figures 5 and 6) is 0.072, which is in a, good agreement with the value of 8, of 0.067 and 
0-071 determine from figures 5 and 6 respectively. 
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